
VitaPad Extended

New approaches to editing
pathway diagrams.

Matt Holford
Yale Center for Statistical Genomics and

Proteomics

Outline

New areas of inquiry:

• Graphics enhancement

• XML persistence

• Database persistence

• Architecture enhancement

Graphics Enhancements

Incorporation of prefuse (Heer, et. al.):

• State-of-the-art toolkit for displaying complex
interactive visual data

• Extensible design framework

• Dynamic control over layout algorithms

• Advanced interaction controls: zooming, fisheye
scoping, animation

XML - The Problem

• We need an XML structure that represents
both scientific and visual data in a single
document and does so in a way that can be
easily interpreted by other programs

• There is not currently a standard in universal
currency for either pathways or for graph
visualization

XML Standards for Pathways

• SBML, CellML
• For simulation model exchange

• Allow incorporation of formulas, stoichiometry, etc.

• PSI MI (MIF)
• Limited to protein-protein interaction

• Transport formats (KGML, DIP, etc)
• Inherently limited by their intent to import/export data from a
specific database

• KGML includes some graphical information

BioPAX

• Attempt to establish a universal standard for
exchange of pathway information

• Large group of collaborators, including
representatives from several major existing
pathway databases

• Uses OWL (Ontological Web Language) an
extension of XML with object-oriented
functionality

BioPAX (Cont.)

• Multiple levels
• Level 1 – Metabolic pathways

• Level 2 – Adds molecular binding interactions

• Level 3 – Signaling and regulation

• Higher levels – Cell-level interactions and higher

• Still under development
• Only level 1 complete

• Level 2 targeted for June, 2005

XML Standards for Graphing

• Most pathway diagram programs use
proprietary, often binary, persistence formats

• SVG (Scalable Vector Graphics) could be used
to describe any graphics, but we would prefer
something more specific to the task

• Handful of standards that predate XML still in
public currency, e.g. Graphviz’s DOT and VCG’s
GML, used by Cytoscape

XGMML

• Details
• XML version of GML

• Easily converted to and from GML

• Not currently maintained or widely used (since 2001)

• Document structure
• Simple yet flexible

• Root element: graph

• Children: Nodes and edges

XGMML (Cont.)

• Document Structure (Cont.)
• Nodes and edges have a graphics element which contains elements
to describe attributes such as colors, fonts and coordinates

• All elements have a generic <att> element which can hold any
information, including tags from another document structure

• This allows us to easily incorporate any information that is not part
of our generic network graph structure, e.g. scientific details, visual
rendering information, user-defined extensions

The Solution

• We use XGMML as the basic document
structure representing the network graph and
most aspects of its appearance

• We use the <att> element for each node and
edge to store scientific information about that
node or edge in BioPAX

The Solution (Cont.)

• We make edge decorations an <att> of an
edge and then use a graphics element to
describe its appearance

• Any other information we wish to attach can
be done so using the <att> element provided
the application is able to handle to document
format that is used

A Simplified Example

<graph id=“1” name=“Sample Graph”>

<node id=“n1”>

<graphics x=“100” y=“100” type=“Rectanlge”/>

<att type=“BioPAX”>

<bp:smallMolecule rdf:ID=“sm001”>

<bp:NAME>Pyruvate</bp:NAME>

</bp:smallMolecule>

</att>

</node>

<node id=“n2”>

<graphics x=“200” y=“200” type=“Rectangle”/>

<att type=“BioPAX”>

<bp:smallMolecule rdf:ID=“sm002”>

<bp:NAME>L-Glutamate</bp:NAME>

</bp:smalllMolecule>

</att>

</node>

<edge source=“n1” target=“n2”>

<graphics outline=“Red” arrow=“both”/>

<att type=“BioPAX”>

<bp:pathwayStep rdfID=“ps001”>

<bp:catalysis rdfID=“cs001”/>

</bp:pathwayStep>

</att>

<att type=“Decoration”>

<decoration id=“d1”>

<graphics fill=“Green”/>

<att type=BioPAX”>

<bp:protein rdf:ID=“p001”/>

</att>

</decoration>

</att>

</edge>

</graph>

EAV/CR

• Database schema developed by Prakash
Nadkarni, Luis Marenco and others at YCMI

• Highly abstract in structure; metadata driven

• Ideal for complex, heterogeneous data
especially in areas of rapidly advancing
knowledge

EAV/CR Schema

• Entity-Attribute-Value (EAV) model
• Each entity (or class) has an arbitrary number of attributes, stored
as rows in the database

• Each attribute of an entity has a particular value

• Domain-specific information not “hard-coded” into the table
structure

• Classes and Relationships (CR)
• Subclasses inherit attributes from superclasses

EAV/CR Schema Illustrated

classes

class_id
class_name
class_description
class_type

objects

object_id
object_class
object_name
object_description

hierarchy

superclass
subclass

attributes

attribute_id
class_id
serial_number
attribute_name
attribute_description
datatype
required
multi_instance
attribute_class
attribute_referred
default_value
value_bounds
choice_set_id

eav_int

object_id
attribute_id
value
serial_no

eav_real

eav_string

eav_objects

eav_date

eav_binary

object_id
attribute_id
value
serial_no

object_id
attribute_id
value
serial_no

object_id
attribute_id
value
serial_no

object_id
attribute_id
value
serial_no

object_id
attribute_id
value
serial_no

datatypes

choice_sets

choice_set
_values

datatype
name
description
table_name

choice_set_id
choice_set_name
description

choice_set_id
value
serial_no

A Simple Example

Name: Gretchen
Age: 2 years
Weight: 9 lbs.
Color: Black

Name: Dmitri
Age: 2 years
Weight: 12 lbs.
Color: Gray

Cats

Name Age Weight Color

Dmitri 2 12 Gray/White

Gretchen 2 9 Black

Traditional
Method

CatC1

NameID

Classes

C2Cat 2O2

C1Cat 1O1

ClassNameID

Objects

IntegerWeightC1A4

StringColorC1A3

IntegerAgeC1A2

StringNameC1A1

DatatypeNameClassID

Attributes

BlackA3O2

GrayA3O1

GretchenA1O2

DmitriA1O1

ValueAttributeObject

Eav_String

9A4O2

12A4O1

2A2O2

2A2O1

ValueAttributeObject

Eav_Int

EAV/CR
Method

Adding New Data

Name: Gretchen
Age: 2 years
Weight: 9 lbs.
Color: Black
Favorite Food: Ice Cream

Name: Dmitri
Age: 2 years
Weight: 12 lbs.
Color: Gray
Favorite Food: Mice

Cats

Name Age Weight Color Fav. Food

Mice

Ice Cream

Dmitri 2 12 Gray/White

Gretchen 2 9 Black

Traditional
Method

CatC1

NameID

Classes

C2Cat 2O2

C1Cat 1O1

ClassNameID

Objects

StringFav. FoodC1A5

IntegerWeightC1A4

StringColorC1A3

IntegerAgeC1A2

StringNameC1A1

DatatypeNameClassID

Attributes
Ice CreamA5O2

MiceA5O1

BlackA3O2

GrayA3O1

GretchenA1O2

DmitriA1O1

ValueAttributeObject

Eav_String

9A4O2

12A4O1

2A2O2

2A2O1

ValueAttributeObject

Eav_Int

EAV/CR
Method

EAV/CR and VitaPad

• Emphasis on flexibility
• Pathways are highly subjective constructs

• Constantly exposed to new data and new approaches to data

• User goals will vary significantly

• Close match with XML and OWL
• Transfer of information will be relatively easy because of the
similarity in design and intent of EAV/CR and OWL

EAV/CR Programming Issues

• Need for a database engine
• YCMI’s library is in C#. This needed to be rewritten in Java.

• Now we can take advantage of object-oriented design; YCMI code
needed to be backwards-compatible with older VB-Script code

• We use Hibernate, an Object Relational Mapping (ORM) tool to
make transaction and query handling easier

• Need for UI tools
• EAV/CR can be quite counter-intuitive to the unitiated

• We are working on building user-friendly controls for browsing
EAV/CR data into the VitaPad framework

Extending VitaPad

• Extensibility
• We intend VitaPad to be responsive to changing scientific
knowledge and user demands

• Because these are unpredictable we must plan accordingly

• In software design, this is typically done in
two ways

• Plugins

• Embedded scripting

Plugins and Scripting

• Some potential uses for plugins:
• Support for a new file format

• Interaction with another application

• Incorporating a new way of displaying scientific data

• Some potential uses of scripting:
• “Live” interaction with a running version of the application

• Ability to create small custom tasks not originally part of program
functionality

Jython

• Implementation of the Python language that
runs on the Java Virtual Machine (JVM)

• Combines functionality of Python and Java
libraries

• Python is widely used, especially in the
biological community

A Theoretical Example

• The problem
• We have datasets reflecting experimental conditions at 0, 12, 24,
48 and 72 hours

• We want to reflect the change over time on the pathway graph

• The solution
• We write a script that displays each set of values in a loop

• We execute this script inside a running instance of VitaPad

Example (Cont.)

while (running)

for (each experiment in list)
dataMap = readExperiment()

for(each key in dataMap.keys)
dec = graph.getDec(dataMap.key)
dec.setValue(dataMap.value)

graph.repaint()

sleep(15)

Pseudo-code

	VitaPad Extended
	Outline
	Graphics Enhancements
	XML - The Problem
	XML Standards for Pathways
	BioPAX
	BioPAX (Cont.)
	XML Standards for Graphing
	XGMML
	XGMML (Cont.)
	The Solution
	The Solution (Cont.)
	A Simplified Example
	EAV/CR
	EAV/CR Schema
	EAV/CR Schema Illustrated
	A Simple Example
	Adding New Data
	EAV/CR and VitaPad
	EAV/CR Programming Issues
	Extending VitaPad
	Plugins and Scripting
	Jython
	A Theoretical Example
	Example (Cont.)

