VitaPad

A graphical editing tool for pathway diagrams.

Matt Holford

Yale Center for Statistical Genomics and Proteomics

Pathways

- Networks of relationships between biological entities
- Scope ranges from sub-cellular to across multiple organs
- Knowledge of pathways facilitates interpretation of experimental data

The Problem

- Pathway definitions are highly subjective and constantly exposed to new information
- Pathway software is limited if it cannot be readily extended to new classes of pathwayrelated data

The Solution

Software for pathway visualization must employ a flexible and extensible design:

- Driven by 'metadata'
- Loose coupling between biological data and graphical information

Other Objectives

- Open-source, including open standards for XML and database storage
- High-resolution graphics, with responsive user interface and fully customizable graph appearance
- Sophisticated automatic graph layout

Program Functions

- I. Create original pathway diagrams
- II. Edit existing diagrams
- III. Add experiment data to diagram
- IV. Use layout algorithms to automatically generate diagrams
- V. Store diagram as XML file
- VI. Persistence of diagrams in a database

Basic Graph Structure

Graph structure is independent of scientific context.

Format is typical of network graphs:

- Nodes (Vertices) e.g. Chemical compounds
- Edges e.g. Chemical Reactions
- Decorations e.g. Catalysts, Expression values

Rendering

Rendering process is independent of domainspecific knowledge.

- Concerned with abstract 2D shapes, not biological concepts like genes, compounds
- New data classes can be rendered simply by detailing their appearance in the database
- Three levels of graphics customization: global level, pathway level and object level

Layout Algorithm

VitaPad uses a "spring-embedded" algorithm to automatically lay out pathways:

- It uses a virtual physical model to establish the ideal location for elements on the graph.
- It is particularly effective for complex, partially-cyclical graphs such as metabolic pathways.

Mapping Experiment Data

- Microarray data is gathered from the database
- Data values are mapped onto the pathway graph next to their corresponding gene
- Visual appearance can be modified through a customizable gradient

Database Persistence

VitaPad is backed by the iSpar database, which provides information on pathway elements and experimental data.

In addition, we provide a schema to allow the end user to build their own database for pathway storage.

Database Features

- Biological details are separated from rendering details
- This allows new classes of data, unknown to the original database, to be added easily
- Makes the program more flexible and extensible

Database Structure

Biological Details

Database Structure

Rendering Details

XML Persistence

VitaPad uses XML to store and transport individual pathway files. An XML format offers several advantages:

- Widely-used, many parsers available.
- Plain-text format, easy-to-read.
- Standardized across multiple platforms.

VitaPad XML Example

```
<LINK id="28652">
   <vertexA>28648</vertexA>
   <vertexB>28650</vertexB>
    <direction>Forward</direction>
    <curvature>0.0</curvature>
   linkColor>-8388608</linkColor>
   <solid>Y</solid>
   <DECORATION className="Enzyme"</pre>
       id="28653">
       <decDataClass altName="2.6.1.2"</pre>
           annotation="" id="EN1714"
           name="Alanine transaminase"/>
       <decShape>Ellipse</decShape>
       <decOutlineColor>-
           16764160</decOutlineColor>
       <decFillColor>-10040769</decFillColor>
       <decFont>Trebuchet MS_0</decFont>
       <decFontSize>9</decFontSize>
       <decFontColor>-6750208</decFontColor>
   </DECORATION>
</LINK>
```